clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.1 Page 632 \n'); //Example 10.1 // Power Required by electruc heater to cause boiling // Rate of water evaporation due to boiling // Critical Heat flux corresponding to the burnout point //Operating Conditions Ts = 118+273 ;//[K] Surface Temperature Tsat = 100+273 ;//[K] Saturated Temperature D = .3 ;//[m] Diameter of pan g = 9.81 ;//[m^2/s] gravitaional constant //Table A.6 Saturated water Liquid Properties T = 373 K rhol = 957.9 ;//[kg/m^3] Density cp = 4.217*10^3 ;//[J/kg] Specific Heat u = 279*10^-6 ;//[N.s/m^2] Viscosity Pr = 1.76 ;// Prandtl Number hfg = 2257*10^3 ;//[J/kg] Specific Heat si = 58.9*10^-3 ;//[N/m] //Table A.6 Saturated water Vapor Properties T = 373 K rhov = .5956 ;//[kg/m^3] Density Te = Ts-Tsat; //From Table 10.1 C = .0128; n = 1; q = u*hfg*[g*(rhol-rhov)/si]^.5*(cp*Te/(C*hfg*Pr^n))^3; qs = q*%pi*D^2/4; m = qs/hfg; qmax = .149*hfg*rhov*[si*g*(rhol-rhov)/rhov^2]^.25; printf("\n Boiling Heat transfer rate = %.1f kW \n Rate of water evaporation due to boiling = %i kg/h \n Critical Heat flux corresponding to the burnout point = %.2f MW/m^2",qs/1000,m*3600,qmax/10^6); //END