clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 1.4 Page 20 \n')// Example 1.4 // Find Velocity of Coolant Fluid Ts = 56.4+273.15; //[K] - Surface Temperature of Steam Tsurr = 25+273.15; //[K] - Temperature of Surroundings e=.88; // Emissivity of Surface //As h=(10.9*V^.8)[W/m^2.k] - Thermal Convectivity from surface to air stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan Boltzmann Constant A=2*.05*.05; // [m^2] Area for Heat transfer i.e. both surfaces E = 11.25; //[W] Net heat to be removed by cooling air Qrad = e*stfncnstt*A*(Ts^4-Tsurr^4); //Using Eq 1.10 Total Rate of Heat Transfer Q = Q by convection + Q by radiation Qconv = E - Qrad;//[W] //As Qconv = h*A*(Ts-Tsurr) & h=10.9 Ws^(.8)/m^(-.8)K.V^(.8) V = [Qconv/(10.9*A*(Ts-Tsurr))]^(1/0.8); printf("\n\n Velocity of Cooling Air flowing= %.2f m/s",V); //END