clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 9 // Mass Transfer // Example 9.8 // Page 369 printf("Example 9.8, Page 369 \n \n"); V = 0.5 ; // [m/s] T_h = 30 ; // [C] T_c = 26 ; // [C] Tm = (T_h+T_c)/2; // From table A.2 rho = 1.173 ; // [kg/m^3] Cp = 1005 ; // [J/kg K] k = 0.02654 ; // [W/m K] alpha = k/(rho*Cp); // [m^2/s] // From Table 9.2 at 301 K Dab = 2.5584*10^-5 ; // [m^2/s] lambda = 2439.2*10^3 ; // [J/kg] // Substituting in equation 9.7.5 // let difference = rho_aw-rho_a infinity difference = rho*Cp*((alpha/Dab)^(2/3))*(T_h-T_c)/lambda; // From steam table Psat = 3363; rho_aw = Psat/(8314/18*299); rho_inf = rho_aw - difference; x = rho_inf/rho; // mole fraction of water vapour in air stream PP = rho_inf*8314/18*303; // Partial pressure of water vapour in air stream // From steam table partial pressure of water vapour at 30 C PP_30 = 4246 ; // [N/m^2] rel_H = PP/PP_30; percent = rel_H*100; printf("Relative humidity = %f i.e. %f percent ",rel_H,percent);