clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 6 // Heat Transfer by Natural Convection // Example 6.4 // Page 264 printf("Example 6.4, Page 264 \n \n"); D = 0.006 ; // [m] e = 0.1 ; Ti = 800 ; // [C] Ta = 1000 ; // [C] // Rate at which heat gained = net radiant heat, gives h*(Ta-800) = 1306.0 ; // [W/m^2] // Using trial and error method // Trial 1 printf("Trial 1 \n"); // Let Ta = 1000 degree C printf("Let Ta = 10000 C \n"); Tm = (Ta+Ti)/2; // From table A.2 v = 155.1*10^-6 ; // [m^2/s] k = 0.0763 ; // [W/m K] Pr = 0.717 ; Gr = 9.81*1/1173*(200*D^3)/(v^2); Ra = Gr*Pr ; // From eqn 6.3.2 Nu = 0.36 + 0.518*(Ra^(1/4))/[1+(0.559/Pr)^(9/16)]^(4/9); h = Nu*k/D; x = h*(Ta-Ti); // [W/m^2] printf("Value of h(Ta-800) = %f W/m^2, which is much larger than the required value of 1306 W/m^2 \n",x); // Trial 2 printf("\nTrial 2 \n"); // Let Ta = 900 printf("Let Ta = 900 C \n"); Ra2 = 6.42 ; Nu2 = 0.9841 ; h2 = 12.15 ; x2 = h2*(900-800); printf("Value of h(Ta-800) = %f W/m^2, which is a little less than the required value of 1306 W/m^2 \n",x2); // Trial 3 printf("\nTrial 3 \n"); // Let Ta = 910 printf("Let Ta = 910 C \n"); Ra3 = 6.93 ; Nu3 = 0.9963 ; h3 = 12.33 ; x3 = h3*(910-800); printf("Value of h(Ta-800) = %f W/m^2 \nThis value is little more than the required value of 1306 W/m^2 \n",x3); // Interpolation T = 900 + (910-900)*(1306-x2)/(x3-x2); printf("\nThe correct value of Ta obtained by interpolation is %f C",T);