clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 6 // Heat Transfer by Natural Convection // Example 6.1 // Page 258 printf("Example 6.1, Page 258 \n \n"); H = 0.5 ; // [m] T_h = 100; // [degree C] T_l = 40; // [degree C] v = 20.02*10^-6 ; // [m/s] Pr = 0.694; k = 0.0297; // [W/m K] T = (T_h+T_l)/2 + 273 ; // [K] printf("Mean film temperature = %f K \n",T); B = 1/T; Gr = 9.81*B*((T_h-T_l)*H^3)/(v^2); Ra = Gr*Pr; // (a) // Exact analysis - Equation 6.2.17 disp("(a)"); printf("Exact analysis\n"); Nu_a = 0.64*(Gr^(1/4))*(Pr^0.5)*((0.861+Pr)^(-1/4)); printf("Nu_L = %f \n",Nu_a); // (b) // Integral method - Equation 6.2.29 disp("(b)"); printf("Integral method \n"); Nu_b = 0.68*(Gr^(1/4))*(Pr^0.5)*((0.952+Pr)^(-1/4)); printf("Nu_L = %f \n",Nu_b); // (c) // McAdams correlation - Equation 6.2.30 disp("(c)"); printf("McAdams correlation \n"); Nu_c = 0.59*(Ra)^(1/4); printf("Nu_L = %f \n",Nu_c); // (d) // Churchill and Chu correlation - Equation 6.2.31 disp("(d)") printf("Churchill and Chu correlation\n"); Nu_d = 0.68 + 0.670*(Ra^(1/4))/[1+(0.492/Pr)^(9/16)]^(4/9); printf("Nu_L = %f \n",Nu_d);