clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 5 // Heat Transfer by Forced Convection // Example 5.7(iii) // Page 241 printf("Example 5.7(iii), Page 241 \n \n"); D = 0.0125 ; // [m] ST = 1.5*D ; SL = 1.5*D ; V_inf = 2 ; // [m/s] N = 5; Tw = 70; // [degree C] Tmi = 30; // [degree C] L = 1; // [m] rho = 1.165 ; // [kg/m^3] v = 16.00 *10^-6 ; // [m^2/s] Cp = 1.005*1000 ; // [J/kg K] k = 0.0267 ; // [W/m K] Pr = 0.701; // From eqn 5.10.2 Vmax = ST/(SL-D)*V_inf ; // [m/s] Re = Vmax*D/v ; // From fig 5.15 f = 0.37/4; // Also, tube arrangement is square X = 1; // From eqn 5.10.6 delta_P = 4*f*N*X*(rho*Vmax^2)/2 ; // [N/m^2] // At 70 degree C Pr1 = 0.694 ; // From table 5.4 and 5.5 C1 = 0.27; m = 0.63; C2 = 0.93; // Substituting in Eqn 5.10.5 Nu = C1*C2*(Re^m)*(Pr^0.36)*(Pr/Pr1)^(1/4); h = Nu*k/D; // [W/m^2 K] // For 1 m long tube m_dot = rho*(10*1.5*D*1)*2; // [kg/s] // Substituting m_dot in 5.3.4 and solving, we get function[f]=temp(Tmo) f(1) = h*(%pi*D*L)*50*[(Tw-Tmi)-(Tw-Tmo(1))]/[log((Tw-Tmi)/(Tw-Tmo(1)))]-m_dot*Cp*(Tmo(1)-Tmi) ; // h*(%pi*D*L)*N*((Tw-Tmi)-(Tw-Tmo))/log[(Tw-Tmi)/(Tw-Tmo)] - m_dot*Cp*(Tmo - Tmi); funcprot(0); endfunction Tmo = 40; // Initial assumed value for fsolve function y = fsolve(Tmo,temp); // Heat transfer rate q q = h*(%pi*D*L)*50*((Tw-Tmi)-(Tw-y))/(log((Tw-Tmi)/(Tw-y))); printf("(iii) Heat transfer rate per unit length to air = %f W",q);