clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 5 // Heat Transfer by Forced Convection // Example 5.6(ii) // Page 235 printf("Example 5.6(ii), Page 235 \n\n") D = 0.075 ; // [m] V = 1.2 ; // [m/s] T_air = 20 ; // [degree C] T_surface = 100 ; // [degree C] T_m = (T_air+T_surface)/2; v = 18.97*10^-6 ; // [m^2/s] k = 0.0290 ; // [W/m K] Pr = 0.696 ; Re_D = V*D/v; Nu = 0.3 + [(0.62*(Re_D^0.5)*(Pr^(1/3)))/[(1+((0.4/Pr)^(2/3)))^(1/4)]]*[1+(Re_D/282000)^(5/8)]^(5/8) ; h = Nu*k/D ; // [W/m^2 K] flux = h*(T_surface - T_air); // [W/m^2] // (ii) Using Trial and error method T_avg = 1500/flux*(T_surface - T_air); T_assumd = 130 ; // [degree C] Tm= 75 ; // [degree C] v1 = 20.56*10^-6 ; // [m^2/s] k1 = 0.0301 ; // [W/m K] Pr1 = 0.693 ; Re_D1 = V*D/v1; // Using eqn 5.9.8 Nu1 = 33.99; h = Nu1*k1/D; // Therefore T_diff = 1500/h; // [degree C] T_avg_calc = 129.9 ; // [degree C] printf("Assumed average wall temperature = %f degree C\n",T_assumd); printf("Calculated average wall Temperature = %f degree C\n",T_avg_calc); printf("Hence,Average wall Temperature = %f degree C",T_avg_calc);