clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 5 // Heat Transfer by Forced Convection // Example 5.3(i) // Page 215 printf("Example 5.3(i), Page 215 \n\n") D = 0.015 ; // [m] V = 1 ; // [m/s] Tw = 90 ; // [degree C] Tmi = 50 ; // [degree C] Tmo = 65 ; // [degree C] // (i) // From Table A.1 k = 0.656 ; // [W/m K] rho = 984.4 ; // [kg/m^3] v = 0.497 * 10^-6 ; // [m^2/s] Cp = 4178 ; // [J/kg K] Pr = 3.12 ; rho_in = 988.1 ; // [kg/m^3] m_dot = %pi*(D^2)*rho_in*V/4 ; // [kg/s] Re = 4*m_dot/(%pi*D*rho*v) ; // Using eqn 5.3.2 and 4.6.4a f = 0.079*(Re)^-0.25 ; Nu = (f/2)*(Re-1000)*Pr/[1+12.7*(f/2)^(1/2)*((Pr^(2/3))-1)]; h = Nu*k/D; // [W/m^2 K] // From the energy equation, extracting the value of L L = m_dot*Cp*(Tmo-Tmi)*[log((Tw-Tmi)/(Tw-Tmo))]/[((Tw-Tmi)-(Tw-Tmo))*h*D*%pi]; // [m] printf("The length of tube if the exit water temperature is 65 degree C = %f m\n",L);