clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 4 // Principles of Fluid Flow // Example 4.3 // Page 181 printf("Example 4.3, Page 181 \n\n") P = 80 * 10^3 ; // [Pa] L = 10 ; // [m] V_bar = 1.9 ; // [m/s] l = 0.25 ; // [m] b = 0.15 ; // [m] // Fully developed flow // From Table A.2, for air at ! atm pressure and 25 degree C rho = 1.185 ; // [kg/m^3] mew = 18.35 * 10^-6 ; // [kg/m s] // At 80 kPa and 25 degree C rho1 = rho*(80/101.3) ; // [kg/m^3] // For given duct r=(b/a) r = b/l; D_e = (4*l/2*b/2)/(l/2 + b/2); // [m] // From eqn 4.6.7 D_l = [2/3 + 11/24*0.6*(2-0.6)]*D_e ; // [m] // Reynolds no based on D_l Re = rho1*D_l*V_bar/mew; printf("Reynolds no = %f \n",Re); f = 0.079*(Re^-0.25) ; printf("f = %f \n",f); // From eqn 4.4.17 delta_P = 4*f*(L/D_l)*(rho1*(V_bar^2)/2); printf("Pressure drop = %f Pa \n",delta_P); power = delta_P*(V_bar*l*b) printf("Power required = %f W",power);