clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 3 // Thermal Radiation // Example 3.15 // Page 151 printf("Example 3.15, Page 151 \n\n") // From example 3.10 F12 = 0.0363; F11 = 0; F13 = 1-F11-F12; // Similarly F21 = 0.0363; F22 = 0; F23 = 0.9637; // Now, F31 = A1/A3*F13 F31 = 2/24*F13; // Therefore F32 = F31; F33 = 1-F31-F32; // Substituting into equation 3.11.6, 3.11.7, 3.11.8, we have f(1),f(2),f(3) function[f]=flux(B) f(1)= B(1) - 0.4*0.0363*B(2) - 0.4*0.9637*B(3) - 0.6*(473^4)*(5.670*10^-8); f(2)= -0.4*0.0363*B(1) + B(2) - 0.4*0.9637*B(3) - 0.6*(5.670*10^-8)*(373^4); f(3)= 0.0803*B(1) + 0.0803*B(2) - 0.1606*B(3); funcprot(0); endfunction B = [0 0 0]; y = fsolve(B,flux); printf("\n B1 = %.1f W/m^2",y(1)); printf("\n B2 = %.1f W/m^2",y(2)); printf("\n B3 = %.1f W/m^2 \n",y(3)); // Therefore H1 = 0.0363*y(2) + 0.9637*y(3) ; // [W/m^2] // and q1 = 2*(y(1) - H1) ; // [W] printf("Net radiative heat transfer = %f W",q1);