clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 2 // Heat Conduction in Solids // Example 2.2 // Page 31 printf("Example 2.2, Page 31 \n\n") d_i=0.02; // [m] inner radius d_o=0.04; // [m] outer radius r_i=d_i/2; // [m] inner radius r_o=d_o/2; // [m] outer radius k=0.58; // [w/m K] thermal conductivity of tube material t_i=70; //[degree C] t_o=100; // [degree C] l=1; // [m] per unit length // thermal resistance of tube per unit length R_th_tube=(log(r_o/r_i))/(2*%pi*k*l); // [K/W] //from table 1.3 , heat transfer co-efficient for condensing steam may be taken as h=5000; // [W/m^2 K] // thermal resistance of condensing steam per unit length R_th_cond=1/(%pi*d_o*l*h); // since R_th_tube is much less than R_th_cond , we can assume outer surface to be at 100 degree C //hence heat flow rate per unit meter is q=l*2*(%pi)*k*(t_i-100)/log(r_o/r_i); printf("Thermal resistance of tube per unit length is %f K/W\n",R_th_tube); printf("Thermal resistance of condensing steam per unit length is %f K/W\n",R_th_cond); printf("Heat flow per unit length is %f W/m",q);