clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 2 // Heat Conduction in Solids // Example 2.11(b) // Page 65 printf("Example 2.11(b), Page 65 \n\n") D = 0.05 ; // [m] To = 450 ; // [degree C] Tf = 90 ; // [degree C] T = 150 ; // [degree c] h = 115 ; // [W/m^2 K] rho = 8000 ; // [kg/m^3] Cp = 0.42*1000 ; // [J/kg K] k = 46 ; // [W/m K] R = D/2; // (b) // let ratio = theta_R_0/theta_o ratio = (T-Tf)/(To - Tf); Bi = h*R/k; // From Table 2.5 lambda_1_R = 0.430; x = 2*[sin(lambda_1_R) - lambda_1_R*cos(lambda_1_R)]/[lambda_1_R - sin(lambda_1_R)*cos(lambda_1_R)]; // Substituting in equattion 2.7.29, we have an equation in variable y(=at/R^2) // Solving function[eqn] = parameter(y) eqn = ratio - x*exp(-(lambda_1_R^2)*(y)); funcprot(0); endfunction y = 5; // (initial guess, assumed value for fsolve function) Y = fsolve(y,parameter); a = k/(Cp*rho); // alpha t2 = Y*(R^2)/(a); // [sec] t2_min = t2/60; // [min] printf("Time taken by the centre of the ball to reach 150 degree C if internal temperature gradients are not neglected is %f seconds i.e. %f minutes",t2,t2_min);