clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 2 // Heat Conduction in Solids // Example 2.10(i) // Page 58 printf("Example 2.10(i), Page 58 \n\n") // Centre of the slab // Given data b = 0.005 ; // [m] t = 5*60; // time, [sec] Th = 200 ; // [C] Tw = 20 ; // [C] h = 150 ; // [W/m^2 K] rho = 2200 ; //[kg/m^3] Cp = 1050 ; // [J/kg K] k = 0.4 ; // [W/m K] // Using charts in fig 2.18 and 2.19 and eqn 2.7.19 and 2.7.20 theta = Th - Tw; Biot_no = h*b/k; a = k/(rho*Cp); // alpha Fourier_no = a*t/b^2; // From fig 2.18, ratio = theta_x_b0/theta_o ratio_b0 = 0.12; // From fig 2.18, ratio = theta_x_b1/theta_o ratio_b1 = 0.48; // Therefore theta_x_b0 = theta*ratio_b0; // [C] T_x_b0 = theta_x_b0 + Tw ; // [C] theta_x_b1 = theta*ratio_b1; // [C] T_x_b1 = theta_x_b1 + Tw ; // [C] // From Table 2.2 for Bi = 1.875 lambda_1_b = 1.0498; x = 2*sin(lambda_1_b)/[lambda_1_b+(sin(lambda_1_b))*(cos(lambda_1_b))]; // From eqn 2.7.20 theta_x_b0 = theta*x*(exp((-lambda_1_b^2)*Fourier_no)); T_x_b0 = theta_x_b0 + Tw; printf("Temperature at b=0 is %f degree C\n",T_x_b0);