clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 1 // Introduction //Example 1.3 // Page 16 printf("Example 1.3, Page 16\n\n"); //Solution: // Given v_i=10; // [m/s] q=1000; // [W] d_i=0.04; // [m] d_o=0.06; // [m] // From appendix table A.2 rho1=0.946; // [kg/m^3] at 100 degree C C_p=1009; // [J/kg K] mdot=rho1*(%pi/4)*(d_i^2)*v_i; // [kg/s] // In this case (dW/dt)_shaft=0 and (z_o - z_i)=0 // From eqn 1.4.15 , q=mdot*(h_o-h_i) // Let dh = (h_o-h_i) dh=q/mdot; // [J/kg] // Let T_o be the outlet temperature T_o=dh/C_p+100; rho2=0.773; // [kg/m^3] at T_o = 183.4 degree C // From eqn 1.4.6 v_o=mdot/(rho2*(%pi/4)*(d_o)^2); // [m/s] dKE_kg=(v_o^2-v_i^2)/2; // [J/kg] printf("Exit Temperature is %f degree C \n",T_o); printf("Exit velocity is %f m/s \n",v_o); printf("Change in Kinetic Energy per kg = %f J/kg",dKE_kg);