clear; clc; // Textbook of Heat Transfer(4th Edition)) , S P Sukhatme // Chapter 1 - Introduction //Example 1.2 // Page 14 printf("Example 1.2, Page 14 \n \n") //Solution: i=950; // radiation flux [W/m^2] A=1.5; // area [m^2] T_i=61; // inlet temperature T_o=69; // outlet temperature mdot=1.5; // [kg/min] , mass flow rate Mdot=1.5/60; // [kg/sec] Q_conductn=50; //[W] t=0.95; // transmissivity a=0.97;// absoptivity // from appendix table A.1 at 65 degree C C_p= 4183 ; // [J/kg K] // Using Equation 1.4.15 , assuming that the flow through the tubes is steady and one dimensional. // in this case (dW/dt)_shaft = 0 // assuming (dW/dt)_shear is negligible // eqn(1.4.15) reduces to q=Mdot*C_p*(T_o-T_i); // let 'n' be thermal efficiency n=q/(i*A); n_percent=n*100; // equation 1.4.13 yields dQ/dt = 0 Q_re_radiated=(i*A*t*a)-Q_conductn-q; // [W] printf("Useful heat gain rate is %f W \n",q); printf("Thermal efficiency is %e i.e. %f per cent \n",n,n_percent); printf("The rate at which energy is lost by re-radiation and convection is %f W",Q_re_radiated)