clear; clc; //Caption: To design a self bias circuit //Given Data at 25degree C B1=150;//beta Ico1=50;//in nA //Given Data at 65degree C B2=1200;//beta Ico2=3;//in micro A Vbe=0.65;//in mV Vcc=20;//in V M=1; //Assumption: Each factor Ico,B, and Vbe cuses the same percentge change(5%) //Let Rb/Re=k //(1+k)*((1200-150)/(1200*150))=0.05 k=((0.05)*((1200*150)/(1200-150)))-1; disp(k,'Rb/Re='); //Let us check our assumption if(M>(1/(1+(k/B1)))) M=1; end //(1+(Rb/Re))*((Ico2-Ico1)/Ic1)=0.05 Since Ico2>>Ico1, we consider only Ico2 Ic1=((1+k)*Ico2)/(0.05*1000); disp('mA',Ic1,'Ic1='); //Vbe changes 2.5mV/degree DVbe=2.5*40; //Total increment dVbe=2*DVbe*(10^-3); //Let l=(Ic1*Re) l=dVbe/0.05; Re=l/Ic1; disp(Re,'Re='); Rb=k*Re; disp(Rb,'Rb='); B=(B1+B2)/2;//beta V=((Ic1/B)*Rb)+(Vbe)+(((Ic1/B)+Ic1)*Re); disp('Volts',V,'V='); R1=(Rb*Vcc)/V; R2=(R1*V)/(Vcc-V); disp('ohm',R1,'R1='); disp('ohm',R2,'R2='); //end