// example :5.15 // find the quadrature formula of // integral of f(x)*(1/sqrt(x(1+x))) in the range [0,1]= a1*f(0)+a2*f(1/2)+a3*f(1)=I // hence find integral 1/sqrt(x-x^3) in the range [0,1] // making the method exact for polinomials of degree upto 2, // I=I1=a1+a2+a3 // I=I2=(1/2)*a2+a3 // I=I3=(1/4)*a2+a3 // A=[a1 a2 a3]' I1=integrate('1/sqrt(x*(1-x))','x',0,1) I2=integrate('x/sqrt(x*(1-x))','x',0,1) I3=integrate('x^2/sqrt(x*(1-x))','x',0,1) //hence // [1 1 1;0 1/2 1 ;0 1/4 1]*A=[I1 I2 I3]' A=inv([1 1 1;0 1/2 1 ;0 1/4 1])*[I1 I2 I3]' // I=(3.14/4)*(f(0)+2*f(1/2)+f(1)); // hence, for solving the integral 1/sqrt(x-x^3) in the range [0,1]=I deff('[y]=f(x)','y=1/sqrt(1+x)'); I=(3.14/4)*[1+2*sqrt(2/3)+sqrt(2)/2]