// example 4.39 // gram schmidt orthogonalisation // 1) W=1; x=poly(0,"x"); P0=1 phi0=P0; a10=0; P1=x-a10*phi0 phi1=P1; a20=integrate('x^2','x',-1,1)/integrate('W*1*phi0','x',-1,1); a21=integrate('(x^3)','x',-1,1)/integrate('(x)^2','x',-1,1); P2=x^2-a20*x-a21*phi1 // 2) disp(' W=1/(1-x^2)^(1/2)'); x=poly(0,"x"); P0=1 phi0=P0; a10=0; P1=x-a10*phi0 phi1=P1; a20=integrate('x^2/(1-x^2)^(1/2)','x',-1,1)/integrate('1/(1-x^2)^(1/2)','x',-1,1); a21=0; // since x^3 is an odd function; P2=x^2-a20*x-a21*phi1