//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 //Chapter-6, Example 1, Page 150 //Title: Bubble Size and Rise Velocity in Geldart A Beds //========================================================================================================== clear clc //INPUT z=0.5;//Height of bed in m dt=0.5;//ID of tube in m rhos=1.6;//Density of catalyst in g/cm^3 dpbar=60;//Averge catalyst diameter in micrometer umf=0.002;//Velocity at minimum fluidization condition in m/s uo=0.2;//Superficial velocity in m/s dor=2;//Diameter of orifice in mm lor=20;//Pitch of perforated plate in mm g=9.80;//g=980;//Acceleration due to gravity in m/s^2 //CALCULATION //Method 1. Procedure using Eqn.(10) & Eqn.(11) db=(0.035+0.040)/2;//Bubble size at z=0.5m from Fig.7(a) & Fig.7(b) ub1=1.55*((uo-umf)+14.1*(db+0.005))*(dt^0.32)+0.711*(g*db)^0.5;//Bubble velocity using Eqn.(10) & Eqn.(11) //Method 2. Werther's procedure si=0.8;//From Fig.6 for Geldart A solids ub2=si*(uo-umf)+(3.2*(dt^(1/3)))*(0.711*(g*db)^0.5);//Bubble velocity using Eqn.(9) //OUTPUT printf('\nMethod 1. Procedure using Eqn.(10) & Eqn.(11)'); mprintf('\n\tDiameter of the bubble=%fm',db); mprintf('\n\tRise velocity of the bubble=%fm/s',ub1); printf('\nMethod 2. Werthers procedure'); mprintf('\n\tDiameter of the bubble=%fm',db); mprintf('\n\tRise velocity of the bubble=%fm/s',ub2); //====================================END OF PROGRAM ======================================================