//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 //Chapter-3, Example 2, Page 76 //Title: Estimation of Minimum fluidizing velocity //========================================================================================================== clear clc //INPUT ephsilon=0.55;//Void fraction of bed rhog=0.0012;//Density of gas in g/cc myu=.00018;//Viscosity of gas in g/cm s dpbar=0.016;//Mean diameter of solids in centimeter phis=0.67;//Sphericity of solids rhos=2.6;//Density of solids in g/cc g=980;//Acceleration due to gravity in square cm/s^2 //CALCULATION //Computation of umf using the simplified equation for small particles umf=((dpbar^2)*(rhos-rhog)*g*(ephsilon^3)*(phis^2))/(150*myu*(1-ephsilon));//Simplified equation to calculate minimum fluidizing velocity for small particles Eq.(21) Re=(dpbar*umf*rhog)/myu;//To calculate Reynolds number for particle //Computation of umf if neither void fraction of bed nor sphericity is known c1=28.7; c2=0.0494;//Value of constants from Table 4, page 70 umf1=(myu/(dpbar*rhog))*(((c1^2)+((c2*(dpbar^3)*rhog*(rhos-rhog)*g)/(myu^2)))^0.5-c1);//Equation to calculate minimum fluidizing velocity for coarse particles Eq.(25) err=((umf-umf1)/umf)*100;//Calculation of error from experimental value //OUTPUT if Re<20 then mprintf('\nThe particle Reynolds no = %f',Re) printf('\nThe simplified equation used for calculating minimum fluidizing velocity is valid.'); end mprintf('\nThe minimum fluidizing velocity by simplified equation for small particles = %fcm/s',umf); mprintf('\nThe minimum fluidizing velocity by equation for coarse partilces = %fcm/s',umf1); mprintf('\nThis value is %f percent below the experimentally reported value.',err); //====================================END OF PROGRAM ======================================================