//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 //Chapter-16, Example 5, Page 425 //Title: Solvent Recovery from Polymer Particles //========================================================================================================== clear clc //INPUT rhos=1600;//Density of solid in kg/m^3 Cps=1.25;//Specific heat of solids in kJ/kg K Fo=0.5;//Flow rate of solids in kg/s Tsi=20;//Inital temperature of solids in degree C Qwi=1;//Initial moisture fraction in water Qwf=0.2;//Final moisture fraction in water Qhi=1.1;//Initial moisture fraction in heptane Qhf=0.1;//Final moisture fraction in heptane Tgi=240;//Initial temperature of gas in degee C Te=110;//Bed temperature in degree C ephsilonm=0.45;//Void fraction of fixed bed ephsilonf=0.75;//Void fraction of fluidized bed uo=0.6;//Superficial gas velocity in m/s di=0.08;//Diameter of tubes in m li=0.2;//Pitch for square arrangement hw=400;//Heat transfer coefficient in W/m^2 K Tc=238;//Temperature at which steam condenses in degree C //Specific heats in kJ/kg K Cwl=4.18;//Water liquid Cwv=1.92;//Water vapor Chl=2.05;//Heptane liquid Chv=1.67;//Heptane vapor //Latent heat of vaporization in kJ/kg Lw=2260;//Water Lh=326;//Heptane //Density of vapor in kg/m^3 at operating conditions rhow=0.56;//Water rhoh=3.1;//Heptane Lf=1.5;//Length of fixed bed in m t=140;//Half-life of heptane in s L=1.5;//Length of tubes in heat exchanger pi=3.14; //CALCULATION //(a) Dryer without Internals xw=(Qwi-Qwf)/(Qhi-Qhf);//Water-heptane weight ratio xv=((Qwi-Qwf)/18)/((Qhi-Qhf)/100);//Water-heptane volume ratio T=(Qwi-Qwf)/18+(Qhi-Qhf)/100;//Total volume rhogbar=((Qwi-Qwf)/18)/T*rhow+((Qhi-Qhf)/100)/T*rhoh;//Mean density of the vapor mixture Cpgbar=(((Qwi-Qwf)/18)/T)*rhow*Cwv+(((Qhi-Qhf)/100)/T)*rhoh*Cwv;//Mean specific heat of vapor mixture //Volumetric flow of recycle gas to the dryer in m^3/s from Eqn.(53) x=(Cpgbar*(Tgi-Te))^-1*[Fo*(Qwi-Qwf)*[Lw+Cwl*(Te-Tsi)]+Fo*(Qhi-Qhf)*[Lh+Chl*(Te-Tsi)]+Fo*(Cps*(Te-Tsi))]; r=Fo*[(Qwi-Qwf)/rhow+(Qhi-Qhf)/rhoh};//Rate of formation of vapor in bed uo1=uo*(x/(x+r));//Superficial velocity just above the distributor At=x/uo1;//Cross-sectional area of bed dt=sqrt(4/pi*At);//Diameter of bed B=-log(Qwf/Qwi)/t;//Bed height from Eqn.(63) tbar=((Qhi/Qhf)-1)/B;//Mean residence time of solids W=Fo*tbar;//Weight of bed Lm=W/(At*(1-ephsilonm)*rhos);//Static bed height Lf=(Lm*(1-ephsilonm))/(1-ephsilonf);//Height of fluidized bed //(b) Dryer with internal heaters f=1/8;//Flow rate is 1/8th the flow rate of recirculation gas as in part (a) x1=f*x;//Volumetric flow of recycle gas to the dryer in m^3/s from Eqn.(53) uo2=uo*(x1/(x1+r));//Superficial velocity just above the distributor Abed=x1/uo2;//Cross-sectional area of bed q=[Fo*(Qwi-Qwf)*[Lw+Cwl*(Te-Tsi)]+Fo*(Qhi-Qhf)*[Lh+Chl*(Te-Tsi)]+Fo*(Cps*(Te-Tsi))]-Abed*uo2*Cpgbar*(Tgi-Te);//Heat to be added from energy balance of Eqn.(53) Aw=q*10^3/(hw*(Tc-Te));//Total surface area of heat exchanger tubes Lt=Aw/(pi*di);//Total length of tubes Nt=Lt/L;//Total number of tubes Atubes=Nt*(pi/4*di^2);//Total cross-sectional area of tubes Atotal=Abed+Atubes;//Total cross-sectional area of tube filled dryer d=sqrt(Atotal*pi/4);//Diameter of vessel li=sqrt(Atotal/Nt);//Pitch for square array of tubes //OUTPUT printf('\n\t\t\tBed diameter(m)\tRecycle vapor flow(m^3/s)'); printf('\nWithout internal heater\t%f\t%f',dt,x); printf('\nWith heating tubes\t%f\t%f',d,x1); //====================================END OF PROGRAM ======================================================