//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 //Chapter-14, Example 2, Page 344 //Title: Flow with Elutriation and Change in Density of Solids //========================================================================================================== clear clc //INPUT dt=4;//Diameter of reactor in m ephsilonm=0.4;//Void fraction of static bed rhos=2500;//Density of solid in the bed in kg/m^3 Lm=1.2;//Height of static bed in m Fo=3000;//Feed rate in kg/hr beta1=1.2;//Increase in density of solids dp=[3;4;5;6;7;8;9;10;11;12;3;14;16;18;20;22;24;26;28;30]*10^-2;//Size of particles in mm po=[0;0.3;0.8;1.3;1.9;2.6;3.5;4.4;5.7;6.7;7.5;7.8;7.5;6.3;5.0;3.6;2.4;1.3;0.5;0];//Size distribution of solids in mm^-1 k=[0;10;9.75;9.5;8.75;7.5;6.0;4.38;2.62;1.20;0.325;0;0;0;0;0;0;0;0;0]*10^-4;//Elutriation constant in s^-1 pi=3.14; //CALCULATION W=(pi/4*dt^2)*Lm*(1-ephsilonm)*rhos;//Weight of solids in bed n=length(dp); i=1; F1guess=1000;//Guess value for F1 F1c=2510:10:2700; while i<=n function[fn]=solver_func(F1)//Function defined for solving the system if k(i)==0 then x(i)=0; break else x(i)=(po(i)/(W*k(i)/F1))*log(1+(W*k(i)/F1)); end fn=F1/(Lm*Fo)-x(i); endfunction [F1(i)]=fsolve(F1guess,solver_func,1E-6);//Using inbuilt function fsolve for solving Eqn.(20) for F1 c(i)=F1c(i)/(Lm*Fo); if F1(i)==0 then a(i)=0; else a(i)=(po(i)/(W*k(i)/F1(i)))*log(1+(W*k(i)/F1(i))); end i=i+1; end plot(F1,a,F1,c); xtitle('F1 vs a,c','F1','a,c'); F1n=2500;//The point were both the curves meet F2=beta1*Fo-F1n;//Flow rate of the second leaving stream j=1; m=length(dp); while j<=m p1(j)=(1/F1n)*((Fo*po(j))/(1+(W/F1n)*k(j)));//Size distribution of stream 1 in mm^-1 from Eqn.(16) p2(j)=k(j)*W*p1(j)/F2;//Size distribution of stream 2 in mm^-1 from Eqn.(7) if p1(j)==0 & p2(j)==0 then tbar(j)=0; else if p1(j)==0 then tbar(j)=(W*p1(j))/(F2*p2(j)); else if p2(j)==0 then tbar(j)=(W*p1(j))/(F1n*p1(j)); else tbar(j)=(W*p1(j))/(F1n*p1(j)+F2*p2(j));//Average time in hr from Eqn.(11) end end end j=j+1; end //OUTPUT printf('\nFlow rate of stream 1:%fkg/hr',F1n); printf('\nFlow rate of stream 2:%fkg/hr',F2); j=1; mprintf('\ntbar(hr)'); while j<=m mprintf('\n%f',tbar(j)); j=j+1; end //====================================END OF PROGRAM ====================================================== //DISCLAIMER: The value obtained for tbar is deviating highly form the one given in textbook. However, the value obtained by manual calculation is close to the ones obtained from the program.