//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 //Chapter-12, Example 4, Page 305 //Title: Reaction in the Slow Bubble Regime //========================================================================================================== clear clc //INPUT uo=0.25;//Superficial gas velocity in m/s db=0.025;//Equilibrium bubble size in m Kr=1.5;//rate constant in m^3 gas/m^3 cat s umf=0.21;//Velocity at minimum fluidization condition in m/s Lm=0.8;//Length of the bed in m ephsilonm=0.42;//Void fraction of fixed bed g=9.81;//Acceleration due to gravity in square m/s^2 //CALCULATION ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7) ub=uo-umf+ubr;//Velocity of bubbles in bubbling beds in Eqn.(6.8) delta=(uo-umf)/(ub+2*umf);//Fraction of bed in bubbles from Eqn.(55) since ub/umf<<1 XA=1-exp(-Kr*Lm*((1-ephsilonm)/uo)*(umf/uo)*(1-delta));//Conversion from Eqn.(57) Krtou=Kr*Lm*(1-ephsilonm)/uo;//Dimensionless reaction rate group from Eqn.(5) //OUTPUT mprintf('\nComparing the values of 1-XA = %f and Krtou = %f with Fig.(6), we can conlcude that this operating condition is shown as point B in Fig.(3)',1-XA,Krtou); printf('\nLine 3 gives the locus of conversions for different values of the reaction rate group for this fluidized contacting'); //====================================END OF PROGRAM ======================================================