//All the quantities are expressed in SI units p0 = 30*101000; //reservoir pressure T0 = 3500; //reservoir temperature R = 520; //specific gas constant gam = 1.22; //ratio of specific heats A_star = 0.4; //rocket nozzle throat area pe = 5529; //rocket nozzle exit pressure equal to ambient pressure at 20 km altitude //(a) //the density of air in the reservoir can be calculated as rho0 = p0/R/T0; //from eq.(8.46) rho_star = rho0*(2/(gam+1))^(1/(gam-1)); //from eq.(8.44) T_star = T0*2/(gam+1); a_star = sqrt(gam*R*T_star); u_star = a_star; m_dot = rho_star*u_star*A_star; //rearranging eq.(8.42) Me = sqrt(2/(gam-1)*(((p0/pe)^((gam-1)/gam)) - 1)); Te = T0/(1+(gam-1)/2*Me*Me); ae = sqrt(gam*R*Te); ue = Me*ae; //thus the thrust can be calculated as T = m_dot*ue; T_lb = T*0.2247; //(b) //rearranging eq.(10.32) Ae = A_star/Me*((2/(gam+1)*(1+(gam-1)/2*Me*Me))^((gam+1)/(gam-1)/2)); printf("\nRESULTS\n---------\n(a)The thrust of the rocket is:\n T = %1.2f x 10^6 N = %6.0f lb\n\n(b)\nThe nozzle exit area is:\n Ae = %2.1f m2\n",T/1e6,T_lb,Ae)