//Chemical Engineering Thermodynamics //Chapter 9 //Fluid Flow in Pipes and Nozzles //Example 9.3 clear; clc; //Given P1 = 50;//initial pressure in Kgf/sq m T1 = 45+273;//initial temperature in K g = 9.81; y = 1.35;//gamma R = 848;//gas constant in m Kgf/Kgmole K M = 29;//molecular weight of air d = 1;//pipe diameter in cm //(i)To plot velocity,specific volume,mass velocity against P2/P1 //(ii)To calculate the critical pressure,critical mass velocity and mass rate of flow //(i)Plotting of graph V1 = (R*T1)/(M*P1*1.033*10^4);//initial volume of the gas in cubic m/Kg //P3 = P2/P1 (say) //Assume P3 values as P3 = [1.0 0.8 0.6 0.4 0.2 0.1 0]; G = [0 0 0 0 0 0 0]; for i = 1:7 u2(i) = (((2*g*y*R*T1)/((y-1)*M))*(1-(P3(i)^((y-1)/y))))^(1/2);//final velocity in m/sec end for i = 1:6 v2(i) = V1/(P3(i)^(1/y));//final specific volume in cubic meter/Kg end for i = 1:6 G(i) = u2(i)/v2(i);//Mass velocity in Kg/sq m sec end clf; xset('window',4); plot(P3,u2,"o-"); xtitle("Velocity vs P2/P1","P2/P1","Velocity"); xset('window',5); plot(P3,G,"+-"); xtitle("Mass velocity vs P2/P1","P2/P1","Mass velocity"); xset('window',6); P_3 = [1.0 0.8 0.6 0.4 0.2 0.1]; plot(P_3,v2,"*-"); xtitle("Sp. volume vs P2/P1","P2/P1","Specific volume"); //(ii)Calculation of critical pressure,critical mass velocity and mass rate of flow //From equation 9.37(page no 181) P2 = P1*(2/(y+1))^(y/(y-1)); mprintf('The critical pressure is %f atm',P2); //From equation a (page no 183) u2 = (((2*g*y*R*T1)/((y-1)*M))*(1-((P2/P1)^((y-1)/y))))^(1/2); mprintf('\n The critical velocity is %f m/sec',u2); //From equation b (page no 183) v2 = ((R*T1)/(M*P1*1.033*10^4))/((P2/P1)^(1/y)); mprintf('\n The critical specific volume is %f cubic meter/Kg',v2); //From relation c (page no 183) G = u2/v2; mprintf('\n The critical mass velocity is %f Kg/sq meter sec',G); W = G*(%pi/4)*(d/(100))^2; mprintf('\n Mass rate of flow through nozzle is %f Kg/sec',W); //end