//A Textbook of Chemical Engineering Thermodynamics //Chapter 6 //Thermodynamic Properties of Pure Fluids //Example 7 clear; clc; //Given: T = 773; //temperature (K) P = 100; //pressure (bar) Ho = 0; //enthalpy of nitrogen at 273 K and 1 bar So = 192.4; //entropy of nitrogen at 298 K and 1 bar To = 273; //(K) Po = 1; //(bar) R = 8.314; //ideal gas constant (kJ/kmol K) //Cp = 27.3+(4.2*10^-3*T) molal heat capacity at 1 bar //To calculate internal energy enthalpy entropy and free energyfor one mole of nitrogen //Step 1: //Assuming that nitrogen is initially at 273 K and 1 bar //del_H1 = intg(CpdT) del_H1 = 27.3*(T-To)+4.2*10^-3*(T^2-To^2)/2; //Assuming that nitrogen is initially at 298 K and 1 bar //del_S1 = intg(Cp*(dT/T)) del_S1 = 27.3*log(T/To)+4.2*10^-3*(T-To); H1 = Ho + del_H1; S1 = So + del_S1; //Step 2: //del_H2 = [V - T*(del_V/del_T)p]dP //Since nitrogen behaves as ideal gas //(del_V/del_T)p = R/P, V-(R*T)/P = 0 del_H2 = 0; del_S2 = -R*log(P/Po); H = H1 + del_H2; S = S1 + del_S2; //Internal energy: U = H-PV = H-RT (J/mol) U = H - (R*T); //Gibbs free energy (J/mol) G = H-(T*S); mprintf('Enthalpy is %5.3e J/mol',H); mprintf('\n Entropy is %f J/mol K',S); mprintf('\n Internal energy is %4.3e J/mol',U); mprintf('\n Gibbs free energy is %4.3e J/mol',G); //end