//A Textbook of Chemical Engineering Thermodynamics //Chapter 5 //Some Applications of the Laws of Thermodynamics //Example 4 clear; clc; //Given: To = 600; //temperature of air (K) Po = 2000; //pressure of air (kPa) gama = 1.4; M = 0.8; //Mach number at throat m = 29; //molecular mass of air R = 8.314; //ideal gas constant //To determine thermodynamical properties at throat and critical pressure //(a) //Using equation 5.40 (Page no 123).. u^2 = (M^2)*gama*P*V //Substituting this in eq. 5.39 (Page no. 123) and on rearranging we get P = Po/((1+(((gama-1)/2)*M^2))^(gama/(gama-1))); //Using eq. 5.39 and the relation PoVo = RTo/m u = sqrt((2*gama*R*To*1000)/(m*(gama-1))*(1-(P/Po)^((gama-1)/gama))); //Using eq. 3.23 (Page no. 49) T = To*(P/Po)^((gama-1)/gama); //Let d be the density d_o = (Po*m)/(R*To); //Since P*(V^gama) = P/(den^gama) = constant...so d = d_o*((P/Po)^(1/gama)); mprintf('(a). At throat'); mprintf('\nPressure = %i kPa',P); mprintf('\nTemperature = %i K',T); mprintf('\nVelocity = %f m/s',u); mprintf('\nDensity = %f kg/cubic m',d); //(b) //Using eq. 5.42 (Page no.124) Pc = Po*((2/(gama+1))^(gama/(gama-1))); //critical pressure mprintf('\n\n(b).'); mprintf('\nThe critical pressure is %f kPa',Pc); //end