clc clear disp("example 15.3") b=4.2 //flux density v=600 //gas velocity d=0.6 //dimension of plate k=0.65 //constent sl=0.6 //length given sb=0.35 //breath given sh=1.7 //height given c=60 //given condectivity e=b*v*d //open circuit voltage vg=e/d //voltage gradient v=k*e //voltage across load vgg=v/d //voltage gradient due to load voltage rg=d/(c*sb*sh) vd=e-v //voltage drop in duct i=vd/rg //current due to voltage drop in duct j=i/(sb*sh) //current density si=e/(rg) //short circuit current sj=si/(sb*sh) //short circuit current density pd=j*vg //power density p=pd*sl*sh*sb //power pp=e*i //also power pde=v*i //power delevered is V*i los=p-pde //loss eff=pde/p //efficiency maxp=e^2/(4*rg) printf("resistence of duct %fohms \n voltage drop in duct %.1fV \n current %.1fA \ncurrent density %fA/m^2 \nshort circuit current %.1fA \nshort current density %fA/m^2 \n power %fMW \npower delivered to load %fW \n loss in duct %fW \nefficiency is %f \nmaximum power delivered to load %dMW",rg,vd,i,j,si,sj,p/10^6,pde/10^6,los/10^6,eff,maxp/10^6)