clear ; clc; // Example 8.6 printf('Example 8.6\n\n'); // Page no. 209 // Solution // Composition of initial solution at 30 degree C s_30 = 38.8 ;// solublity of Na2CO3 at 30 degree C, by using the table for solublity of Na2CO3-[g Na2CO3/100 g H2O] If_Na2CO3 = s_30/(s_30+100) ;// Initial mass fraction of Na2CO3 If_H2O = 1-If_Na2CO3 ;// Initial mass fraction of H2O // Composition of crystals // Basis : 1g mol Na2CO3.10H2O n_mol_Na2CO3 = 1 ;// Number of moles of Na2CO3 n_mol_H2O = 10 ;// Number of moles of H2O mwt_Na2CO3 = 106 ;// mol. wt of Na2CO3 mwt_H2O = 18 ;// mol. wt of H2O m_Na2CO3 = mwt_Na2CO3*n_mol_Na2CO3 ;// Mass of Na2CO3 m_H2O = mwt_H2O*n_mol_H2O ;// Mass of H2O Cf_Na2CO3 = m_Na2CO3/(m_Na2CO3+m_H2O) ;// mass fraction of Na2CO3 Cf_H2O = 1-Cf_Na2CO3 ;// mass fraction of H2O n_un = 9 ;// Number of unknowns in the given problem n_ie = 9 ;// Number of independent equations d_o_f = n_un-n_ie ;// Number of degree of freedom printf('Number of degree of freedom for the given system is %i .\n',d_o_f); // Final composition of tank //Basis :I = 10000 kg // Material balance reduces to Accumulation = final -initial = in-out(but in = 0) I = 10000 ;//initial amount of saturated solution-[kg] amt_C = 3000 ;// Amount of crystals formed-[kg] Fm_Na2CO3 = I*If_Na2CO3-amt_C*Cf_Na2CO3 ;// Mass balance of Na2CO3 Fm_H2O = I*If_H2O-amt_C*Cf_H2O ;// Mass balance of H2O //To find temperature,T s_T = (Fm_Na2CO3/Fm_H2O)*100 ;// Solublity of Na2CO3 at temperature T s_20 = 21.5 ;//Solublity of Na2CO3 at temperature 20 degree C ,from given table-[g Na2CO3/100 g H2O] // Find T by interpolation T = 30-((s_30-s_T)/(s_30-s_20))*(30-20) ;// Temperature -[degree C] printf(' Temperature to which solution has to be cooled to get 3000 kg crystals is %.0f degree C .\n',T);