clear ; clc; //Page No. 419 // Example 13.8 printf('Example 13.8\n\n'); // Solution fig E13.8 T1c = 15 ;// Temperature of F & P -[degree C] T1 = 273 + T1c ;// Temperature of F & P -[K] P1 = 105 ;// Pressure of F & P -[kPa] // F analysis F_CO2 = 1.2/100 ;// Volume fraction F_odr = 98.8/100 ;// Volume fraction // P analysis P_CO2 = 3.4/100 ;// Volume fraction P_odr = 96.6/100 ;// Volume fraction Tc_CO2 = 7 ;//Temperature CO2 -[degree C] T_CO2 = 273 + Tc_CO2 ;// Temperature CO2 -[K] P_CO2 = 131 ;// Pressure of CO2 -[kPa] CO2 = 0.0917 ;// Volume flow rate of CO2-[cubic metre/min] // Convert given volume flow rate of CO2 at temperature of F & P nw_CO2 = (CO2 * T1 * P_CO2)/(T_CO2 * P1) ;// volume flow rate of CO2 at temperature of F & P-[cubic metre] // Solve P & F by following eqns. obtained by component balance of CO2 and total balance // F(F_odr) = P(P_odr) - others balance // F + nw_CO2 = P - Total balance // Solving by matrix method a = [F_odr -P_odr;1 -1];// Matrix formed by coefficients of unknown b = [0;-nw_CO2] ;// Matrix formed by constants x = a\b ;// matrix of solution, x(1) = F;x(2) = P F = x(1) ;//Volume flow rate of entering gas-[cubic metre/min] P = x(2) ;//Volume flow rate of product [cubic metre/min] printf('Volume flow rate of entering gas is %.2f cubic metre/min',F);