clear; clc; // Example 10.1 printf('Example 10.1\n\n'); //Page no. 264 // Solution F = 100 ;// feed to the reactor-[g mol] // Composition of feed CH4 = 0.4*F ;// [g mol] Cl2 = 0.5*F ;// [g mol] N2= 0.1*F ;//[g mol] // Extent of reaction can be calculated by using eqn. 9.3 // Based on CH4 nio_CH4 = CH4 ;//[g mol CH4] vi_CH4 = -1 ;// coefficint of CH4 ex_CH4 = -(nio_CH4)/vi_CH4 ;// Max. extent of reaction based on CH4 // Based on Cl2 nio_Cl2 = Cl2 ;//[g mol Cl2] vi_Cl2 = -1 ;// coefficint of Cl2 ex_Cl2 = -(nio_Cl2)/vi_Cl2 ;// Max. extent of reaction based on Cl2 if (ex_Cl2 > ex_CH4 ) printf(' \n CH4 is limiting reactant \n'); else printf(' \n (b) Cl2 is limiting reactant \n'); end // By execution of above block its clear that CH4 is limiting reactant, therefore extent of reaction is cn_CH4 = 67/100 ;// percentage conversion of CH4 ex_r = (-cn_CH4)*CH4/vi_CH4 ;// extent of reaction printf(' extent of reaction is %.1f g moles reacting \n',ex_r); n_un = 11 ;// Number of unknowns in the given problem n_ie = 11 ;// Number of independent equations d_o_f = n_un-n_ie ;// Number of degree of freedom printf(' Number of degree of freedom for the given system is %i \n',d_o_f); // Product composition using species balance using eqn.10.2 vi_CH3Cl = 1; vi_HCl = 1; vi_N2 = 0; p_CH4 = CH4+(vi_CH4*ex_r);// [g mol] p_Cl2 = Cl2+(vi_Cl2*ex_r);// [g mol] p_CH3Cl = 0+(vi_CH3Cl*ex_r);// [g mol] p_HCl = 0+(vi_HCl*ex_r);// [g mol] p_N2 = N2+(vi_N2*ex_r);// [g mol] // As we have taken F = 100 so answers we are getting can be directly used as percentage composition printf('\n\nComposition of product stream in %% g mol of products\n'); printf('\nProduct Percentage g mol\n'); printf('\nCH4 %.1f%% g mol\n',p_CH4); printf('\nCl2 %.1f%% g mol\n',p_Cl2); printf('\nCH3Cl %.1f%% g mol\n',p_CH3Cl); printf('\nHCl %.1f%% g mol\n',p_HCl); printf('\nN2 %.1f%% g mol\n',p_N2);