clear; clc; printf("\t\t\tExample Number 7.9\n\n\n"); // heat transfer across horizontal air gap // Example 7.9 (page no.-346) // solution a = 0.2;// [m] side length of plate d = 0.01;// [m] seperation between two plates p = 101325;// [Pa] pressure of air R = 287;// [] universal gas constant T1 = 100;// [degree celsius] temperature of first plate T2 = 40;// [degree celsius] temperature of second plate // the properties are the same as given in example(7.8) Tf = (T1+T2)/2;// [degree celsius] rho = p/(R*(Tf+273));// [Kg/m^(3)] density k = 0.0295;// [W/m degree celsius] Pr = 0.70;// prandtl number Beta = 1/(Tf+273);// [K^(-1)] mu = 2.043*10^(-5);// [Kg/m s] viscosity g = 9.8;// [square meter/s] acceleration due to gravity // the GrPr product is evaluated on the basis of the separating distance, so we have Gr_into_Pr = (g*rho^(2)*Beta*(T1-T2)*(d)^(3)*Pr)/(mu^(2)); // consulting table 7-3(page no.-344) we find C = 0.059; n = 0.4; m = 0; Ke_by_K = C*(Gr_into_Pr)^(n)*(a/d)^(m); A = a^(2);// [square meter] area of plate q = Ke_by_K*k*A*(T1-T2)/d;// [W] printf("heat transfer across the air space is %f W",q);