clear; clc; printf("\t\t\tExample Number 7.8\n\n\n"); // heat transfer across vertical air gap // Example 7.8 (page no.-345) // solution L = 0.5;// [m] side length vertical square plate d = 0.015;// [m] distance between plates p = 101325;// [Pa] pressure of air R = 287;// [] universal gas constant T1 = 100;// [degree celsius] temperature of first plate T2 = 40;// [degree celsius] temperature of second plate E = 0.2;// emissivity of both surfaces // the properties of air is evaluated at the mean temperature Tf = (T1+T2)/2;// [degree celsius] rho = p/(R*(Tf+273));// [Kg/m^(3)] density k = 0.0295;// [W/m degree celsius] Pr = 0.70;// prandtl number Beta = 1/(Tf+273);// [K^(-1)] mu = 2.043*10^(-5);// [Kg/m s] viscosity g = 9.8;// [square meter/s] acceleration due to gravity // the Grashof-prandtl number product is now calculated as Gr_into_Pr = (g*rho^(2)*Beta*(T1-T2)*(d)^(3)*Pr)/(mu^(2)); // we may now use equation (7-64) to calculate the effective thermal conductivity, with L = 0.5;// [m] del = 0.015;// [m] // and the constants taken from table 7-3(page no.-344): Ke_by_K = 0.197*(Gr_into_Pr)^(1/4)*(L/del)^(-1/9); // the heat transfer may now be calculated with equation (7-54). the area is A = L^(2);// [square meter] q = Ke_by_K*k*A*(T1-T2)/del;// [W] // the radiation flux is calculated with equation(7-67), taking T1 = 373;// [K] T2 = 313;// [K] E1 = E; E2 = E; sigma = 5.669*10^(-8);// [W/square meter K^(4)] q_A = sigma*(T1^(4)-T2^(4))/((1/E1)+(1/E2)-1);// [W/square meter] q_rad = A*q_A;// [W] printf("free-convection heat transfer across the air space is %f W",q); printf("\n\nradiation heat transfer across the air space is %f W",q_rad);