clear; clc; printf("\t\t\tExample Number 7.10\n\n\n"); // heat transfer across water layer // Example 7.10 (page no.-346-347) // solution L = 0.5;// [m] length of square plate d = 0.01;// [m] seperation between square plates T1 = 100;// [degree F] temperature of lower plate T2 = 80;// [degree F] temperature of upper plate // we evaluate properties at mean temperature of 90 degree F and obtain, for water k = 0.623;// [W/m degree celsus] // and the following term is particularly useful in obtaining the product GrPr // g*Beta*rho^(2)*Cp/(mu*k) = 2.48*10^(10) [1/m^(3) degree celsius] // the Grashof-prandtl number product is now evaluated using the plate spacing of 0.01 m as the characterstic dimension K = 2.48*10^(10);// [1/m^(3) degree celsius] Gr_into_Pr = K*(T1-T2)*(5/9)*d^(3); // now, using equation 7-64 and consulting table 7-3(page no.-344) we obtain C = 0.13; n = 0.3; m = 0; // therefore, equation (7-64) becomes Ke_by_K = C*Gr_into_Pr^(n); // the effectve thermal conductivity is thus ke = k*Ke_by_K;// [W/m degree celsius] // and the heat transfer is A = L^(2);// [square meter] area of plate q = ke*A*(T1-T2)*(5/9)/d;// [W] printf("heat lost by the lower plate is %f W",q);