//Example 3.2 //Program to Determine Theoretical attenuation in dB/km due to fundamental rayleigh scattering at optical wavelengths: //(a)0.63um //(b)1.00um //(c)1.30um clear; clc ; close ; //Given data n=1.46; //REFRACTIVE INDEX p=0.286; //PHOTOELASTIC COEFFICIENT Bc=7*10^(-11); //m^2/N - ISOTHERMAL COMPRESSIBILITY K=1.381*10^(-23); //J/K - BOLTZMANN's CONSTANT Tf=1400; //Kelvin - FICTIVE TEMPERATURE l=1000; //metre - FIBER LENGTH //(a)Attenuation in dB/km due to fundamental rayleigh scattering at 0.63um lambda=0.63*10^(-6); //metre - WAVELENGTH Gamma_R=8*(%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4); L_km1=exp(-Gamma_R*l) A1=10*log10(1/L_km1); //(b)Attenuation in dB/km due to fundamental rayleigh scattering at 1.00um lambda=1.00*10^(-6); //metre - WAVELENGTH Gamma_R=8*(%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4); L_km2=exp(-Gamma_R*l) A2=10*log10(1/L_km2); //(c)Attenuation in dB/km due to fundamental rayleigh scattering at 1.30um lambda=1.30*10^(-6); //metre - WAVELENGTH Gamma_R=8*(%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4); L_km3=exp(-Gamma_R*l) A3=10*log10(1/L_km3); //Displaying the Results in Command Window printf("\n\n\t (a)Attenuation in dB/km due to fundamental rayleigh scattering at 0.63um = %0.1f dB/km.",A1); printf("\n\n\t (b)Attenuation in dB/km due to fundamental rayleigh scattering at 1.00um = %0.1f dB/km.",A2); printf("\n\n\t (c)Attenuation in dB/km due to fundamental rayleigh scattering at 1.30um = %0.1f dB/km.",A3);