clear; clc; // Illustration 6.7 // Page: 207 printf('Illustration 6.7 - Page: 207\n\n'); // solution //****Data****// // Air G_prime = 1.10;// [kg/square m.s] viscocity_G = 1.8*10^(-5);// [kg/m.s] ScG = 0.6;// [for air water mixture] Temp1 = 273+20;// [K] // Water L_prime = 5.5;// [kg/square m.s] //*****// // Air: Ma = 29;// [kg/kmol] G = G_prime/Ma;// [kmol/square m.s] Density_G = (Ma/22.41)*(273/Temp1); Cpa = 1005;// [N.m/kg.K] PrG = 0.74; // Liquid: kth = 0.587;// [W/m.K] Cpb = 4187;// [N.m/kg.K] viscocity_L = 1.14*10^(-3);// [kg/m.s] // From Table 6.5 (Pg 206) Ds = 0.0725;// [m] beeta = 1.508*(Ds^0.376); shiLtW = (2.09*10^(-6))*(737.5*L_prime)^beeta/(Ds^2);// [square m/cubic m] shiLsW = 2.47*10^(-4)/(Ds^1.21);// [square m/cubic m] shiLoW = shiLtW-shiLsW;// [square m/cubic m] // From Table 6.4 (Pg 205) m = 34.03; n = 0; p = 0.362; aAW = m*(808*G_prime/Density_G^0.5)^(n)*L_prime^p;// [square m/cubic m] // From Eqn. 6.75 aVW = 0.85*aAW*shiLtW/shiLoW;// [square m/cubic m] // From Table 6.3 e = 0.74; eLo = e-shiLtW; // From Eqn. 6.70 deff('[y] = f11(Fg)','y = ((Fg*ScG^(2/3))/G)-1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))^(-0.36)'); Fg = fsolve(1,f11);// [kmol/square m.s] // Since the liquid is pure water. It has no mass trnsfer coeffecient. // For such process we need convective heat transfer coeffecient for both liquid & gas. // Asuming Jd = Jh // From Eqn. 6.70 Jh = 1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))^(-0.36); Hg = Jh*Cpa*G_prime/(PrG^(2/3));// [W/square m.K] PrL = Cpb*viscocity_L/kth; // Heat transfer analog of Eqn. 6.72 Hl = 25.1*(kth/Ds)*(Ds*L_prime/viscocity_L)^0.45*PrL^0.5;// [W/square m.K] printf("The volumetric coeffecients are\n"); printf("Based on Gas Phase %f W/cubic m.K\n",Hg*aVW); printf("based on Liquid Phase %f W/cubic m.K\n",Hl*aVW);