clear; clc; // Illustration 6.5 // Page: 200 printf('Illustration 6.5 - Page: 200\n\n'); // solution // ****Data****// G = 0.80;// [cubic m/s] P = 10^2;// [kN/square m] XaG = 0.07; Temp = 273+30;// [K] L = 3.8;// [kg/s] Density_L = 1235;// [kg/cubic m] viscocity_L = 2.5*10^(-3);// [kg/m.s] //******// // a = SO2 b = air // Solution (a) // Since the larger flow quantities are at the bottom for an absorber, the diameter will be choosen to accomodate the bottom condition Mavg_G = XaG*64+((1-XaG)*29);// [kg/kmol] G1 = G*(273/Temp)*(P/101.33)*(1/22.41);// [kmol/s] G2 = G1*Mavg_G;// [kg/s] Density_G = G2/G;// [kg/cubic m] // Assuming Complete absorption of SO2 sulphur_removed = G1*XaG*64;// [kg/s] abcissa = (L/G)*((Density_G/Density_L)^0.5); //From Fig. 6.24, using gas pressure drop of 400 (N/square m)/m ordinate = 0.061; // For 25 mm ceramic Intalox Saddle: Cf = 98;// [Table 6.3 Pg 196] J = 1; G_prime = (ordinate*Density_G*(Density_L-Density_G)/(Cf*viscocity_L^0.1*J))^0.5;// [kg/square m.s] A = G2/G_prime;// [square m] D = (4*A/%pi)^0.5;// [m] printf("The Tower Diameter is %f m\n",D); // Solution (b) // Let D = 1;// [m] A = %pi*D^2/4;// [square m] // The pressure drop for 8 m of irrigated packing delta_p = 400*8;// [N/square m] // For dry packing G_prime = (G2-sulphur_removed)/A;// [kg/square m.s] P = P-(delta_p/1000);// [kN/square m] Density_G = (29/22.41)*(273/Temp)*(P/101.33);// [kg/cubic m] // From Table 6.3 (Pg 196) Cd = 241.5; // From Eqn. 6.68 delta_p_by_z = Cd*G_prime^2/Density_G;// [N/square m for 1m of packing] pressure_drop = delta_p+delta_p_by_z;// [N/square m] V = 7.5;// [m/s] head_loss = 1.5*V^2/2;// [N.m/kg] head_loss = head_loss*Density_G;// [N/square m] Power = (pressure_drop+head_loss)*(G2-sulphur_removed)/(Density_G*1000);// [kW] eta = 0.6; Power = Power/eta;// [kW] printf("The Power for the fan motor is %f kW\n",Power);