clear; clc; // Illustration 6.4 // Page: 183 printf('Illustration 6.4 - Page: 183\n\n'); // solution //****Data****// //From Illustrtion 6.3: G = 0.100;// [kmol/s] Density_G = 0.679;// [kg/cubic m] q = 5*10^(-3);// [cubic m/s] Va = 3.827;// [m/s] z = 1.063;// [m] L = 0.25;// [kmol/s] hL = 0.0106;// [m] hW = 0.05;// [m] Z = 0.824;// [m] E = 0.05; ya = 0.18;// [mole fraction methanol] // a:CH3OH b:H2O Ma = 32;// [kg/kmol] Mb = 18;// [kg/kmol] // From Chapter 2: ScG = 0.865; Dl = 5.94*10^(-9);// [square m/s] // From Eqn. 6.61: NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G^0.5)+(104.6*q/Z))/ScG^0.5; DE = ((3.93*10^(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))^2;// [square m/s] thethaL = hL*z*Z/q;// [s] NtL = 40000*Dl^0.5*((0.213*Va*Density_G^0.5)+0.15)*thethaL; // For 15 mass% methanol: xa = (15/Ma)/((15/Ma)+(85/Mb)); // From Fig 6.23 (Pg 184) mAC = -(NtL*L)/(NtG*G);// [Slope of AC line] meqb = 2.50;// [slope of equilibrium line] // From Eqn. 6.52: NtoG = 1/((1/NtG)+(meqb*G/L)*(1/NtL)); // From Eqn. 6.51: EOG = 1-exp(-NtoG); // From Eqn. 6.59: Pe = Z^2/(DE*thethaL); // From Eqn. 6.58: eta = (Pe/2)*((1+(4*meqb*G*EOG/(L*Pe)))^0.5-1); // From Eqn. 6.57: EMG = EOG*(((1-exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+(exp(eta)-1)/(eta*(1+eta/(eta+Pe)))); // From Eqn. 6.60: EMGE = EMG/(1+(EMG*E/(1-E))); printf("Effeciency of Sieve trays: %f",EMGE);