clear; clc; // Illustration 4.6 // Page: 100 printf('Illustration 4.6 - Page: 100\n\n'); // solution //***Data***// // a = N2 // For N2 at 300K viscosity1 = 1.8*10^(-5);// [kg/m.s] Pt1 = 10133;// [N/square m.sec] T = 300;// [K] z = 0.0254;// [m] T2 = 393;// [K] //***********// Ma = 28.02;// [kg/kmol] R = 8314;// [J/K.kgmol] //From Eqn 4.22 lambda = (3.2*viscosity1/Pt1)*(R*T/(2*(%pi)*Ma))^0.5; d = 10^(-4);// [m] d_by_lambda = d/lambda; // Kundsen flow will not occur // N2 flow corresponding to 9 cubic ft/square ft.min at 300K & 1 std atm = 0.0457 cubic m/square m.min Na1 = 0.0457*(273/T)*(1/22.41);// [kmol/square m.s] Pt1_diff_Pt2 = 2*3386/13.6;// [N/square m] Ptav = Pt1+(Pt1_diff_Pt2/2);// [N/square m] // From Eqn. 4.26 k1 = Na1*R*T*z/(Ptav*(Pt1_diff_Pt2));// [m^4/N.s] //For N2 at 393K viscosity2 = 2.2*10^(-5);// [kg/m.s] k2 = (k1*viscosity1)/(viscosity2);// [m^4/N.s] // From Eqn 4.26 Na = (k2*Ptav*Pt1_diff_Pt2)/(R*T2*z);// [kmol/square m.s] printf("Flow rate to be expected is %e kmol/square m.s",Na);