clear; clc; // Illustration 4.2 // Page: 92 printf('Illustration 4.2 - Page: 92\n\n'); printf('Illustration 4.2 (a)\n\n'); // solution (a) // Given a = 3/2;// [cm] thetha = 68*3600;// [s] // Ca can e calculated in terms of g/100 cubic cm Cao = 5;// [g/100 cubic cm] Ca_thetha = 3;// [g/100 cubic cm] Ca_Inf = 0;// [g/100 cubic cm] //**********// E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf); // E = 0.6; // From Fig. 4.2 (Pg 91): For diffusion from only one exposed surface D*thetha/(4*a^2) = 0.128 D = 0.128*4*(a^2)/thetha;// [square cm/s] D = D*10^(-4);// [square m/s] printf('Diffusivity of urea in gel from only one exposed durface: %e square m/s\n\n',D); printf('Illustration 4.2 (b)\n\n'); // Solution (b) //****Data****// // Ca can e calculated in terms of g/100 cubic cm Cao = 5;// [g/100 cubic cm] Ca_thetha = 1;// [g/100 cubic cm] Ca_Inf = 0;// [g/100 cubic cm] //*********// E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf); // E = 0.2; // From Fig. 4.2 (Pg 91): For diffusion from only one exposed surface D*thetha/(4*a^2) = 0.568 D = 4.70*10^(-6);// From Illusration 4.2(a) [square cm/s] thetha = 0.568*4*a^2/D;// [s] thetha = thetha/3600;// [h] printf('The time taken for the avg. conc. to fall to 1g/100 cubic cm is:%f h\n\n',thetha); printf('Illustration 4.2 (c)\n\n'); // solution (c) //****Data*****// Cao = 5;// [g/100 cubic cm] Ca_thetha = 1;// [g/100 cubic cm] Ca_Inf = 0;// [g/100 cubic cm] //*******// E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf); // E = 0.2; // From Fig. 4.2: For diffusion from two opposite exposed surface D*thetha/(a^2) = 0.568 D = 4.70*10^(-6);// From Illusration 4.2(a) [square cm/s] thetha = 0.568*(a^2)/D;// [s] thetha = thetha/3600;// [h] printf('The time taken for the avg. conc. to fall to 1g/100 cubic cm is:%f h',thetha);