clear; clc; // Illustration 3.7 // Page: 80 printf('Illustration 3.7 - Page: 80\n\n'); // solution //****Data*****// // a = water b = air out_dia = 0.0254;// [m] wall_thick = 0.00165;// [m] avg_velocity = 4.6;// [m/s] T1 = 66;// [C] P = 1;// [atm] Pa1 = 0.24;// [atm] k1 = 11400;// [W/(square m.K)] T2 = 24;// [C] k2 = 570;// [W/square m.K] k_Cu = 381;// [w/square m.K] //******// // For the metal tube int_dia = out_dia-(2*wall_thick);// [m] avg_dia = (out_dia+int_dia)/2;// [mm] Nb = 0; Flux_a = 1; Ya1 = 0.24; Yb1 = 1-Ya1; Mav = (Ya1*18.02)+(Yb1*29);// [kg/kmol] density = (Mav/22.41)*(273/(273+T1));// [kg/cubic m] viscosity = 1.75*10^(-5);// [kg/m.s] Cpa = 1880;// [J/kg.K] Cpmix = 1145;// [J/kg.K] Sc = 0.6; Pr = 0.75; G_prime = avg_velocity*density;// [kg/square m.s] G = G_prime/Mav;// [kmol/square m.s] Re = avg_dia*G_prime/viscosity; // From Table 3.3: // Jd = Std*Sc^(2/3) = (F/G)*Sc^(2/3) = 0.023*Re^(-0.17); Jd = 0.023*Re^(-0.17); F = (0.023*G)*(Re^(-0.17)/Sc^(2/3)); // The heat transfer coeffecient in the absence of mass transfer will be estimated through Jd = Jh // Jh = Sth*Pr^(2/3) = (h/Cp*G_prime)*(Pr^(2/3)) = Jd h = Jd*Cpmix*G_prime/(Pr^(2/3)); U = 1/((1/k1)+((wall_thick/k_Cu)*(int_dia/avg_dia))+((1/k2)*(int_dia/out_dia)));// W/square m.K // Using Eqn. 3.70 & 3.71 with Nb = 0 // Qt = (Na*18.02*Cpa/1-exp(-(Na*18.02*Cpa/h)))*(T1-Ti)+(Lambda_a*Na); // Qt = 618*(Ti-T2); // Using Eqn. 3.67, with Nb = 0, Cai/C = pai, Ca1/C = Ya1 = 0.24; // Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1)); // Solving above three Eqn. simultaneously: Ti = 42.2;// [C] pai = 0.0806;// [atm] Lambda_a = 43.4*10^6;// [J/kmol] Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1)));// [kmol/square m.s] Qt1 = 618*(Ti-T2);// [W/square m] Qt2 = ((Na*18.02*Cpa/(1-exp(-(Na*18.02*Cpa/h))))*(T1-Ti))+(Lambda_a*Na);// [W/square m] // since the value of Qt1 & Qt2 are relatively close printf('The local rate of condensation of water is %e kmol/square m.s',Na);