clear; clc; // Illustration 3.4 // Page: 69 printf('Illustration 3.4 - Page: 69\n\n'); // solution //***Data****// // a = UF6 b = air // The average heat transfer coefficient: Nu_avg = 0.43+0.532(Re^0.5)(Pr^0.31) // The analogus expression for mass transfer coefficient: Sh_avg = 0.43+0.532(Re^0.5)(Sc^0.31) d = 0.006;// [m] velocity = 3;// [m/s] surf_temp = 43;// [C] bulk_temp = 60;// [C] avg_temp = (surf_temp+bulk_temp)/2; //[C] density = 4.10;// [kg/cubic m] viscosity = 2.7*10^(-5);// [kg/m.s] Dab = 9.04*10^(-6);// [square m/s] press = 53.32;// [kN/square m] tot_press = 101.33;// [kN/square m] //******// avg_press = press/2; // [kN/square m] Xa = avg_press/tot_press; Xb = 1-Xa; Re = d*velocity*density/viscosity; Sc = viscosity/(density*Dab); Sh_avg = 0.43+(0.532*(2733^0.5)*(0.728^0.5)); c = 273.2/(22.41*(273.2+avg_temp));// [kmol/cubic m] F_avg = Sh_avg*c*Dab/d;//[kmol/cubic m] Nb = 0; Ca1_by_C = press/tot_press; Ca2_by_C = 0; Flux_a = 1; // Using Eqn. 3.1 Na = Flux_a*F_avg*log((Flux_a-Ca2_by_C)/(Flux_a-Ca1_by_C));//[kmol UF6/square m.s] printf('Rate of sublimation is %e kmol UF6/square m.s',Na);