clear; clc; // Illustration 3.2 // Page: 56 printf('Illustration 3.2 - Page: 56\n\n'); // solution //***Data****// d = 0.025;// [m] avg_velocity = 3;// [m/s] viscosity = 8.937*10^(-4);// [kg/m.s] density = 997;// [kg/m^3] //*********// kinematic_viscosity = viscosity/density;// [square m/s] Re = d*avg_velocity*density/viscosity; // Reynold's number comes out to be 83670 // At this Reynold's number fanning factor = 0.0047 f = 0.0047; L = 1;// [m] press_drop = 2*density*f*L*(avg_velocity^2)/(d);// [N/square m] P = 3.141*(d^2)*avg_velocity*press_drop/4;// [N.m/s] for 1m pipe m = 3.141*(d^2)*L*density/4; // From Eqn. 3.24 Ld = ((kinematic_viscosity^3)*m/P)^(1/4);// [m] // From Eqn. 3.25 Ud = (kinematic_viscosity*P/m)^(1/4);// [m/s] printf('Velocity of small eddies is %f m/s\n',Ud); printf('Length scale of small eddies is %e m',Ld);