clear; clc; // Illustration 10.3 // Page: 502 printf('Illustration 10.3 - Page: 502\n\n'); // Solution //****Data****// // a:water b:isopropyl ether c:acetic acid F = 8000;// [kg/h] xF = 0.30;// [wt. fraction acetic acid] //*******// // From Illustration 10.1 (Pg 494) // Equilibrium Data: // Eqb = [y_star*100 x*100] Eqb = [0.18 0.69;0.37 1.41;0.79 2.89;1.93 6.42;4.82 13.30;11.40 25.50;21.60 36.70;31.10 44.30;36.20 46.40]; // Solution(a) // From Figure 10.23 (Pg 503): // For minimum solvent rate: y1 = 0.143;// [Wt fraction of acetic acid in isopropyl ether layer] xM = 0.114;// [Wt fraction of acetic acid in water layer] // From Eqn. 10.24: Bm = (F*xF/xM)-F;// [kg/h] printf("Minimm solvent rate: %f kg/h\n",Bm); printf("\n"); // Solution (b) B = 20000;// [kg solvent/h] yS = 0; S = B; // From Eqn 10.24: xM = ((F*xF)+(S*yS))/(F+S); // From Fig. 10.23 (Pg 503): y1 = 0.10; // Operating curve data: // Operat = [YsPlus1 Xs] Operat = [0 0.02;0.01 0.055;0.02 0.09;0.04 0.150;0.06 0.205;0.08 0.250;0.1 0.3]; scf(23); plot(Eqb(:,2)/100,Eqb(:,1)/100,Operat(:,2),Operat(:,1)); xgrid(); a = gca(); a.data_bounds = [0 0;xF y1]; legend("Operating Line","Equilibrium Line"); xlabel("Wt. fraction acetic acid in water solution"); ylabel("Wt. fraction acetic acid in isopropyl ether solution"); title("Solution 10.3") // From Figure scf(22): xNp = 0.02; Np = 7.6; // By acid balance: M = B+F; E1 = M*(xM-xNp)/(y1-xNp);// [kg/h] RNp = M-E1;// [kg/h] printf("Number of theoretical Stages: %f\n",Np); printf("Weight of the extract: %d kg/h\n",E1); printf("Weight of the raffinate %d kg/h\n",RNp);