clear; clc; // Illustration 10.1 // Page: 494 printf('Illustration 10.1 - Page: 494\n\n'); // solution //****Data****// // a:water b:isopropyl ether c:acetic acid xF = 0.30;// [mol fraction] yS = 0;// [mol fraction] S1 = 40;// [kg] B1 = 40;// [kg] //*******// // Equilibrium data at 20 OC: // Wa: Wt. percent of a // Wb: Wt. percent of b // Wc: Wt. percent of c // Data1 = [Wc Wa Wb] // Data1: water layer Data1 = [0.69 98.1 1.2;1.41 97.1 1.5;2.89 95.5 1.6;6.42 91.7 1.9;13.30 84.4 2.3;25.50 71.1 3.4;36.70 58.9 4.4;44.30 45.1 10.6;46.40 37.1 16.5]; // Data2: isopropyl ether layer Data2 = [0.18 0.5 99.3;0.37 0.7 98.9;0.79 0.8 98.4;1.93 1 97.1;4.82 1.9 93.3;11.40 3.9 84.7;21.60 6.9 71.5;31.10 10.8 58.1;36.20 15.1 48.7]; scf(20); plot(Data1(:,3)/100,Data1(:,1)/100,Data2(:,3)/100,Data2(:,1)/100); xgrid(); xlabel("Wt fraction of isopropyl ether"); ylabel("Wt fraction of acetic acid"); // x: Wt fraction of acetic acid in water layer. // y: Wt fraction of acetic acid in isopropyl layer. legend("x Vs fraction ether","y Vs fraction ether"); // The rectangular coordinates of Fig 10.9(a) will be used but only upto x = 0.30 a = gca(); a.data_bounds = [0 0;1 0.3]; // Stage 1: F = 100;// [kg] // From Eqn. 10.4: M1 = F+S1;// [kg] // From Eqn. 10.5: xM1 = ((F*xF)+(S1*yS))/M1; // From Fig. 10.15 (Pg 495): // Point M1 is located on the line FB and with the help of tie line passing through M1: x1 = 0.258;// [mol fraction] y1 = 0.117;// [mol fraction] // From Eqn. 10.8: E1 = (M1*(xM1-x1)/(y1-x1));// [kg] // From Eqn. 10.4: R1 = M1-E1;// [kg] // Stage 2: S2 = 40;// [kg] B2 = 40;// [kg] // From Eqn. 10.15: M2 = R1+B2;// [kg] // From Eqn. 10.16: xM2 = ((R1*x1)+(S2*yS))/M2; // Point M2 is located on the line R1B and the tie line passing through R2E2 through M2: x2 = 0.227; y2 = 0.095; // From Eqn. 10.8: E2 = (M2*(xM2-x2)/(y2-x2));// [kg] // From Eqn. 10.4: R2 = M2-E2;// [kg] // Stage 3: S3 = 40;// [kg] B3 = 40;// [kg] // From Eqn. 10.15: M3 = R2+B3;// [kg] // From Eqn. 10.16: xM3 = ((R2*x2)+(S3*yS))/M3; // Point M3 is located on the line R2B and the tie line passing through R3E3 through M3: x3 = 0.20;// [mol fraction] y3 = 0.078;// [mol fraction] // From Eqn. 10.8: E3 = (M3*(xM3-x3)/(y3-x3));// [kg] // From Eqn. 10.4: R3 = M3-E3;// [kg] Ac = x3*R3; printf("The composited extract is %f kg\n",(E1+E2+E3)); printf("The acid content is %f kg\n",((E1*y1)+(E2*y2)+(E3*y3))); printf("\n"); // If an extraction to give the same final raffinate concentration were to be done in single stage, the point M would be at the intersection of tie line R3E3 and the line BF. x = 0.20;// [mol fraction] xM = 0.12;// [mol fraction] // From Eqn. 10.6: S = F*(xF-xM)/(xM-yS);// [kg] printf("%f kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\n",S);