//Example 10.6 //page 672 //Control Systems: Principles and Design //M Gopal, Second Edition, Tata McGraw-Hill //Chapter:Compensator design using Bode Plots xdel(winsid())//close all graphics Windows clear; clc; s=poly(0,"s") w=poly(0,'w') G=1/((s)*(0.1*s+1)*(0.2*s+1)) wb=12 Kv=30 pm=50 //degrees K=Kv/horner((s)*G,0) G1=syslin('c',K*G) [gm,frg]=g_margin(G1) [pm0,frp]=p_margin(G1) //Design of lag compensation part phi=-180+pm+5 wc=2.1 //New gain crossover frequency Beta=10 Kc=K/Beta z=wc/2 p=z/Beta //Design of lead compensation part alpha=1/Beta phi1= asin(((1-alpha)/(1+alpha))) wc1=6.5 z1=wc1*sqrt(alpha) p1=wc1/sqrt(alpha) Kc=Kc/sqrt(alpha) D=Kc*((((s+z)*(s+z1))/((s+p)*(s+p1)))) disp(D,'Lead-Lag Compensator=') Gc=syslin('c',G1*D) f=figure() bode(G1) bode_asymp(G1) title('Bode plot of uncompensated system') a=gca(); a.parent.background=8; f=figure() bode(Gc) bode_asymp(Gc) title('Bode plot of compensated system') a=gca(); a.parent.background=8; f=figure() black([G1;Gc ],0.01,100,["Plant";"Plant and Lag Compensator"]); a=gca(); a.parent.background=8; Leg=a.children(1); Leg.legend_location="in_lower_right"; nicholschart(colors=color('light gray')*[1 1])