//Centroid of the gusset plate //refer fig. 9.15 //The composite area is divided into algebraic sum and differences of simple geometries //for rectangle A1=160*280 //mm^2 x1=140 //mm y1=80 //mm //for triangle A2=280*40/2 //mm^2 x2=2*280/3 //mm y2=160+40/3 //mm //1st hole A3=(-%pi*21.5^2)/(4) //mm^2 x3=70 //mm y3=50 //mm //second hole A4=-363.05 //mm^2 x4=140 //mm y4=50 //mm //third hole A5=-363.05 //mm^2 x5=210 //mm y5=50 //mm //fourth hole A6=-363.05 //mm^2 x6=70 //mm y6=120 //mm //fifth hole A7=-363.05 //mm^2 x7=140 //mm y7=130 //mm //sixth hole A8=-363.05 //mm^2 x8=210 //mm y8=140 //mm A=A1+A2+A3+A4+A5+A6+A7+A8 //mm^2 sumAixi=A1*x1+A2*x2+A3*x3+A4*x4+A5*x5+A6*x6+A7*x7+A8*x8 //mm^3 xbar=sumAixi/A //mm sumAiyi=A1*y1+A2*y2+A3*y3+A4*y4+A5*y5+A6*y6+A7*y7+A8*y8 ybar=sumAiyi/A //mm printf("\xbar=%.3f mm \nybar=%.3f mm",xbar,ybar)