//Determine moment of inertia //refer fig.9.39 A1=100*30 //mm^2 A2=100*25 //mm^2 A3=200*20 //mm^2 A4=87.5*20/2 //mm^2 A5=87.5*20/2 //mm^2 A=A1+A2+A3+A4+A5 //mm^2 ybar=(3000*135+2500*70+4000*10+875*(20/3+20)*2)/A //mm Ixx=((100*30*30*30)/(12))+(3000*(75.74^2))+((25*(100^3))/(12))+(2500*(10.74^2))+((200*(20^3))/(12))+(4000*(49.26^2))+((87.5*(20^3))/(36))+(875*(32.59^2))+((87.5*(20^3))/(36))+(875*(32.59^2)) //mm^4 Iyy=((30*(100^3))/(12))+((100*(25^3))/(12))+((20*(200^3))/(12))+((20*(87.5^3))/(36))+(875*(41.66^2))+((20*(87.5^3))/(36))+(875*(41.66^2)) //mm^4 printf("\nIxx=%.2d mm^4\nIyy=%.2d mm^4",Ixx,Iyy) //The answers vary due to round off error