//Analyse the truss by method of tension coefficient to determine the forces //Refer fig.4.19 //Consider entire structure //Taking moment about A YD=(40*2+50*6+30*4*sind(60)+60*4)/8 XA=-30 //kN YA=40+50+60-90.49 //kN //Take A as origin and determine co-ordinates of all other point //Consider equilibrium of individual joints //Joint A tAB=-(59.51/3.464) FAB=tAB*4 //kN tAE=64.36/4 FAE=tAE*4 //kN //Joint B tBE=-11.547+17.18 FBE=tBE*4 //kN tBC=0.5*(-17.18-5.637) FBC=tBC*4 //kN //Joint C tCD=-(14.434+37.818)/2 FCD=4*tCD //kN tCD=4 //kN tCE=-14.434-tCD FCE=11.692*4 //kN //Joint D tDE=-0.5*(-26.126) FDE=tDE*4 //kN printf("The forces in different members are:-\nAB=%.2d kN\nBC=%.2d kN\nCD=%.2d kN\nDE=%.2d kN\nEA=%.2d kN\nEB=%.2d kN\nEC=%.2d kN",FAB,FBC,FCD,FDE,FAE,FBE,FCE)