//1 m radius wheel //refer fig. 22.4(a),(b),(c),(d),(e) and (f) vA=1*5 //m/sec aA=1*4 //m/sec^2 vBA=1*5 //m/sec vB=vA+vBA //m/sec aBA=1*4 //m/sec^2 an=5^2 //m/sec^2 aB=sqrt((8^2)+(25^2)) //m/sec^2 theta=atand(25/8) //degree //Consider rotation of point D vDx=5+3*sind(60) //m/sec vDy=3*cosd(60) //m/sec vD=7.745 //m/sec //inclination to horizontal theta2=atand(1.5/7.598) //degree vDA=0.6*5 //m/sec^2 aD=sqrt((14.190^2)+(1.422^2)) //m/sec^2 theta3=atand(14.190/1.422) //degree printf("\nAt B\naB=%.3f m/sec^2\ntheta=%.2f degree\nvB=%.3f m/sec\nAt D\nvD=%.3f m/sec^2\ntheta2=%.2f degree\naD=%.3f m/sec^2\ntheta3=%.2f degree",aB,theta,vB,vD,theta2,aD,theta3)